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Abstract: (1) To investigate whether interventional cone-beam computed tomography (cbCT) could
benefit from AI denoising, particularly with respect to patient body mass index (BMI); (2) From 1
January 2016 to 1 January 2022, 100 patients with liver-directed interventions and peri-procedural
cbCT were included. The unenhanced mask run and the contrast-enhanced fill run of the cbCT were
reconstructed using weighted filtered back projection. Additionally, each dataset was post-processed
using a novel denoising software solution. Place-consistent regions of interest measured signal-to-
noise ratio (SNR) per dataset. Corrected mixed-effects analysis with BMI subgroup analyses compared
objective image quality. Multiple linear regression measured the contribution of “Radiation Dose”,
“Body-Mass-Index”, and “Mode” to SNR. Two radiologists independently rated diagnostic confidence.
Inter-rater agreement was measured using Spearman correlation (r); (3) SNR was significantly higher
in the denoised datasets than in the regular datasets (p < 0.001). Furthermore, BMI subgroup analysis
showed significant SNR deteriorations in the regular datasets for higher patient BMI (p < 0.001), but
stable results for denoising (p > 0.999). In regression, only denoising contributed positively towards
SNR (0.6191; 95%CI 0.6096 to 0.6286; p < 0.001). The denoised datasets received overall significantly
higher diagnostic confidence grades (p = 0.010), with good inter-rater agreement (r ≥ 0.795, p < 0.001).
In a subgroup analysis, diagnostic confidence deteriorated significantly for higher patient BMI
(p < 0.001) in the regular datasets but was stable in the denoised datasets (p ≥ 0.103).; (4) AI denoising
can significantly enhance image quality in interventional cone-beam CT and effectively mitigate
diagnostic confidence deterioration for rising patient BMI.

Keywords: cone beam computed tomography; AI (artificial intelligence); image quality enhancement

1. Introduction

Despite advances in classical oncological therapy, primary and secondary hepatic
malignancies are associated with poor outcomes and are generally considered the limiting
factor to overall survival [1]. Therefore, many prominent guidelines define radical resection
as the curative treatment of choice for hepatic malignancies, regardless of their origin [2–4].
Unfortunately, numerous patients with malignant liver lesions are disqualified from cu-
rative resection due to the number or location of the lesions, their proximity to vascular
structures, or insufficient parenchyma reserve [5]. However, recent review articles have
pointed at the possible benefit of liver-directed interventions to decrease tumor burden
and, at best, to re-allow surgical resection [6]. Prominent interventional radiological pro-
cedures include transarterial chemoembolization (TACE) with or without drug-eluting
beads and selective internal radiation therapy (SIRT) with yttrium-90 spheres [7,8]. In the
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last decade, such interventional procedures have benefitted from improved visualization
due to cone-beam computed tomography, a technique enabling cross-sectional images via
rotating the c-arm equipped with a flat-panel detector around the patient [9]. During the
procedure, parenchyma blood volume (PBV) overlay maps can be used to localize the inter-
ventional target lesion [10]. Such PBV overlay maps are typically acquired by subtraction of
cone-beam computed tomography (CT) via two C-arm rotations, one unenhanced “mask”
run, and one contrast-enhanced “fill” run [11]. Although modern interventional radiology
suites are usually equipped with automatic radiation dose adaption to preserve signal
yield, recent studies have pointed out image quality deterioration for higher patient body
mass index (BMI) [12,13]. In conventional CT imaging, recent AI postprocessing solutions
show promising potential for significant image quality enhancement [14]. However, like all
novel techniques, AI-based postprocessing is associated with typical pitfalls, such as loss
of information and spatial resolution deterioration via increased blurring [15]. Therefore,
review articles covering this topic have consecutively suggested investigating AI solutions
strictly on a use-case level [16]. And although several prior studies have evaluated the
impact of AI postprocessing on image quality in other modalities, investigating the effects
of denoising on interventional cone-beam CT regarding patient BMI has, to the best of
our knowledge, not yet been attempted [17–19]. Therefore, we aimed to investigate if
interventional cone-beam CT could benefit from AI denoising, especially when performing
subgroup analyses for patient BMI. We hypothesize that denoising may help mitigate image
quality deterioration for rising patient BMI in this setting.

2. Materials and Methods
2.1. Study Population and Radiation Dose

An a priori power analysis using the software solution G*Power (ver. 3.1.9.7, Franz
Faul, University of Kiel, Germany) determined the necessary sample size (f = 1.18, α = 0.05,
1-β = 0.95) to be 100 patients [20]. The local ethics committee approved the analyzing of our
center’s in-patients for eligibility from 1 January 2016 to 1 January 2022 with a waiver for
the need for informed consent (#167/2020BO2). Initially, we collected clinical indications,
type of interventional procedure, and whether patients had received dual-phase C-arm
CT during the procedures. If a patient had received multiple interventional procedures in
the given timeframe, we only included the most recent and removed the others (“dupli-
cates”). Further exclusion criteria were: no oncological indication, no SIRT/TACE, and only
single-phase c-arm CT during the procedure. From the included 100 patients, we collected
age, sex, height, weight, and their body mass index (BMI in kg/m2) at the procedure
time from their clinical reports. Furthermore, the patients were assigned BMI subgroups
(BMI ≤ 24 = normal weight, BMI 25–28 = pre-obesity, BMI ≥ 29 = obesity) according to
appropriate reference data and rounded to the nearest whole number to facilitate compre-
hensive subgroup testing [21]. From the dose reports of the procedure, we collected the
dose-area-product (in mGy*cm2) of the corresponding series.

2.2. Image Acquisition, Reconstruction, and Postprocessing

All images were acquired in interventions performed on the same multiaxis robotic an-
giographic C-arm suite (Artis Zeego Q, VE40 A, Siemens Healthcare, Forchheim, Germany).
Parenchyma blood volume (PBV) maps were acquired by an unenhanced rotation (“mask”)
and a contrast-enhanced return-rotation (“fill”). The acquisition time per rotation was 4 s
and the total examination time was 16 s. The X-ray tube was set to 90 kilovolts and covered
a total angle of 200◦ (0.8◦ per frame, 248 frames). The matrix size was 616 × 480 pixels,
the flat-panel pixel size was 616 µm, and the mean radiation dose exposure was 0.36 µGy
per frame. For the fill run, a contrast media dilution of 30 mL (7.5 mL: Ultravist 370,
Ultravist 370, Bayer Schering, Zurich City, Zurich, Switzerland + 22.5 mL: saline solu-
tion) was injected through an antecubital vein cannula using a dual-head power injector
(Accutron-HP-D, Medtron, Saarbrücken, Germany) at a flow rate of 3 mL/s. The raw image
data was automatically sent to a commercially available offline workstation (syngo XWP,
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Siemens Healthcare). Subsequently, automatic reconstruction of CT-like axial images with
a slice thickness and increment of 1 mm ensued, using a weighted filtered back-projection
algorithm with a median filter. Additionally, all reconstructions were post-processed using
a novel AI denoising algorithm (PixelShine®, AlgoMedica, Sunnyvale, CA, USA). Subtrac-
tions for vascular input function calculation and parenchymal blood volume (PBV) overlay
maps were created in MatLab (Ver. R2021a, The MathWorks, Natick, MA, USA).

2.3. Objective Image Quality

For objective image quality analysis, all corresponding series (regular: mask & fill,
denoising: mask & fill) per patient were loaded into the open-source ImageJ distribution FIJI
(ver. 1.53k, Wayne Rasband, National Institutes of Health-NIH, Bethesda, MD, USA) [22].
The non-denoised fill series were used to draw a total of 30 regions of interest (ROI) with
a diameter ≥ 1 cm2 into homogenous areas of liver parenchyma outside of the vessels,
bile ducts, and cancerous lesions. The program then conveyed those ROIs into each
loaded series per patient and performed consistent measurements of mean CT numbers in
Hounsfield Units (HU) and their standard deviation (SD). The SD of HU was defined as
image noise. A signal-to-noise ratio (HU/SD) per ROI was computed as a comprehensive
measure for objective image quality.

2.4. Diagnostic Confidence

The patient datasets were anonymized and randomized by a group member oth-
erwise not associated with diagnostic confidence analysis. Two radiologists with 5 and
10 years of experience independently rated diagnostic confidence on a 5-point Likert scale
(1 = poor, 2 = subpar, 3 = fair, 4 = good, 5 = excellent). All ratings per patient and dataset
(regular/denoising) were pooled for an overall grade.

2.5. Statistical Analysis

Statistical analysis and illustration were performed using GraphPad Prism version 9.3
for Windows (GraphPad Software, San Diego, CA, USA). Data distribution was tested using
the Shapiro–Wilk test. Normally distributed variables were expressed as mean ± standard
deviation and non-normally distributed variables as median and interquartile range (IQR).
Data analysis ensued using a mixed-effects model with Greenhouse–Geisser correction in
case of violation of sphericity. Post-hoc tests were performed for BMI subgroups. Two-stage
step-up correction after Benjamini, Krieger, and Yekutieli was utilized to counteract type
1 error increase in multiple comparisons. An adjusted p-value ≤ 0.05 indicated statistical
significance. Multiple linear regression was utilized to investigate the effect of the variables
“BMI” (normal weight/pre-obesity/obesity, reference category: normal weight), “Radiation
Exposure” (dose-area-product in mGy*cm2), and “Mode” (regular/denoising, reference
category: regular) on the signal-to-noise ratio. The utility and goodness-of-fit of the model
were measured using variance (ANOVA), adjusted R2, and the standard deviation of the
residuals (Sy.x). R2 values of ≤0.13 were considered indicative for poor, 0.13–0.26 for
moderate, and ≥0.26 for high goodness-of-fit [23]. We computed Spearman’s correlation
coefficient (r) to measure inter-rater-agreement for the diagnostic confidence ratings. We
defined r-values of 0–0.5 as indicative for poor, 0.51–0.74 for moderate, 0.75–0.9 for good,
and 0.91–1.00 for excellent agreement.

3. Results
3.1. Study Population and Radiation Dose

A total of 16,856 procedures were evaluated for eligibility, 16,756 procedures were
excluded, and 100 procedures were included. From these 100 procedures, 600 datasets were
generated through reconstruction and postprocessing to investigate image quality and di-
agnostic confidence further. Figure 1 visualizes patient enrollment and the study workflow.
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Figure 1. Patient enrollment and study workflow.

Of the 100 included patients (25 female/75 male, mean age 68 ± 11 years, mean BMI
27 ± 4), 50 patients received selective internal radiation therapy (SIRT), and 50 patients
received transarterial chemoembolization (TACE). A total of 60 patients had hepatocellular
carcinoma (HCC), 17 patients had metastasized uveal melanoma (mUM), 10 patients had
metastasized neuroendocrine tumor (NET), eight patients had metastasized cholangiocellu-
lar carcinoma (CCC), and five patients had metastasized colorectal carcinoma (CRC). See
Table 1 for further details.

Mean radiation exposure was 3363.01 ± 690.79 mGy*cm2 for the mask series (nor-
mal weight: 2502.6 ± 308.98 mGy*cm2; pre-obesity: 3342.29 ± 223.13 mGy*cm2; obesity:
4140.46 ± 364.03 mGY*cm2) and 3705.20 ± 761.08 mGy*cm2 for the fill series (normal
weight: 2757.25 ± 340.41 mGy*cm2; pre-obesity: 3682.38 ± 245.83 mGy*cm2; obesity:
4561.76 ± 401.07 mGY*cm2). As expected, the post-hoc subgroup analysis showed radia-
tion exposure to rise significantly with rising patient BMI in both series (each p < 0.001).
See Figure 2 for further details.



Tomography 2022, 8 937

Table 1. Patient data.

Female Male
Overall

SIRT TACE Overall SIRT TACE Overall

N
um

be
r

(n
) Overall 13 12 25 37 38 75 100

HCC 4 9 13 12 35 47 60
mUM 4 1 5 12 12 17
CCC 1 1 6 1 7 8
CRC 2 1 3 2 2 5
NET 2 1 3 5 2 7 10

A
ge

(y
)

Overall 61 ± 15 69 ± 9 65 ± 13 69 ± 12 69 ± 9 69 ± 11 68 ± 11
HCC 61 ± 17 70 ± 9 67 ± 12 70 ± 13 69 ± 9 69 ± 10 69 ± 11
mUM 60 ± 9 73 62 ± 10 74 ± 10 74 ± 10 71 ± 11
CCC 40 40 67 ± 12 64 67 ± 11 63 ± 14
CRC 61 ± 30 62 61 ± 22 72 ± 8 72 ± 8 65 ± 17
NET 74 ± 3 61 70 ± 8 57 ± 12 69 ± 6 61 ± 11 63 ± 11

H
ei

gt
h

(c
m

) Overall 165 ± 6 161 ± 8 163 ± 7 173 ± 8 173 ± 8 173 ± 8 171 ± 9
HCC 168 ± 4 162 ± 9 164 ± 8 171 ± 6 173 ± 8 172 ± 7 171 ± 8
mUM 164 ± 7 157 162 ± 6 173 ± 12 173 ± 12 170 ± 12
CCC 160 160 174 ± 6 172 174 ± 5 172 ± 7
CRC 172 ± 1 162 169 ± 6 177 ± 2 177 ± 2 172 ± 6
NET 159 ± 1 154 157 ± 3 176 ± 4 172 ± 11 175 ± 6 170 ± 10

W
ei

gh
t(

kg
)

Overall 72 ± 9 70 ± 10 71 ± 9 80 ± 12 79 ± 14 79 ± 13 77 ± 12
HCC 71 ± 11 69 ± 11 70 ± 11 78 ± 9 79 ± 14 78 ± 13 77 ± 13
mUM 73 ± 12 69 72 ± 10 81 ± 11 81 ± 11 79 ± 12
CCC 69 69 83 ± 14 86 84 ± 13 82 ± 13
CRC 79 ± 4 73 77 ± 4 98 ± 13 98 ± 13 85 ± 14
NET 70 ± 4 78 72 ± 6 70 ± 11 85 ± 9 74 ± 12 74 ± 10

BM
I(

kg
/m

2 ) Overall 26 ± 3 27 ± 4 27 ± 3 27 ± 4 26 ± 4 27 ± 4 27 ± 4
HCC 25 ± 3 26 ± 4 26 ± 4 27 ± 3 26 ± 4 26 ± 4 26 ± 4
mUM 27 ± 3 28 27 ± 3 27 ± 3 27 ± 3 27 ± 3
CCC 27 27 28 ± 4 29 28 ± 3 28 ± 3
CRC 27 ± 1 28 27 ± 1 32 ± 5 32 ± 5 29 ± 4
NET 28 ± 2 33 29 ± 4 22 ± 3 29 ± 1 24 ± 4 26 ± 4

SIRT = selective internal radiation therapy; TACE = transarterial chemoembolization; HCC = hepatocellular carci-
noma; mUM = metastasized uveal melanoma; CCC = cholangiocellular carcinoma; CRC = colorectal carcinoma;
NET = neuroendocrine tumor.

3.2. Objective Image Quality Analysis

Overall, there were no significant differences between regular and denoised CT num-
bers in HU (p > 0.999) for the mask and the fill run, respectively. However, for both
series, the noise was significantly lower in the denoised datasets (p < 0.001), and SNR was
significantly higher in the denoised datasets (p < 0.001), regardless of BMI. In addition,
the algorithm reduced noise to equivalent levels in both series (p = 0.704) and across all
BMI values (Mask: p ≥ 0.073; Fill: p ≥ 0.490), leading to equally stable SNR values in the
denoising datasets (each p ≥ 0.999). See Table 2 and Figures 3–5 for further details.
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Table 2. Objective image quality analysis.

Mask Fill

BMI-Group Regular Denoising
p

(Two-Sided,
Adjusted)

Regular Denoising
p

(Two-Sided,
Adjusted)

H
U

Overall 44.86 ± 5.79 44.77 ± 5.06 >0.999 64.92 ± 7.5 64.79 ± 6.55 >0.999
Normal
Weight 44.29 ± 4.35 44.27 ± 3.80 >0.999 64.1 ± 5.63 64.07 ± 4.92 >0.999

Pre-Obesity 44.83 ± 5.62 44.74 ± 4.92 >0.999 64.87 ± 7.28 64.75 ± 6.36 >0.999
Obesity 45.39 ± 6.95 45.23 ± 6.08 >0.999 65.69 ± 9.00 65.46 ± 7.86 >0.999

N
oi

se

Overall 28.45 ± 6.45 19.84 ± 1.55 <0.001 24.65 ± 3.35 19.70 ± 1.17 <0.001
Normal
Weight 22.48 ± 1.96 19.65 ± 1.17 <0.001 21.34 ± 1.34 19.51 ± 0.88 <0.001

Pre-Obesity 26.9 ± 2.42 19.83 ± 1.50 <0.001 24.03 ± 1.56 19.69 ± 1.13 <0.001
Obesity 35.74 ± 5.94 20.02 ± 1.85 <0.001 28.38 ± 2.72 19.89 ± 1.39 <0.001

SN
R

Overall 1.63 ± 0.30 2.25 ± 0.08 <0.001 2.66 ± 0.33 3.28 ± 0.14 <0.001
Normal
Weight 1.97 ± 0.14 2.25 ± 0.06 <0.001 3.00 ± 0.17 3.28 ± 0.10 <0.001

Pre-Obesity 1.66 ± 0.12 2.25 ± 0.08 <0.001 2.69 ± 0.18 3.28 ± 0.14 <0.001
Obesity 1.29 ± 0.20 2.25 ± 0.10 <0.001 2.32 ± 0.25 3.28 ± 0.17 <0.001

HU = CT numbers in Hounsfield Units, Noise = standard deviation of CT numbers (SD of HU), SNR = Signal-to-
Noise Ratio; p = significance level.
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Figure 3. CT numbers in HU, overall and posthoc subgroup analysis for patient BMI.
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Figure 5. Signal-to-Noise Ratio (HU/SD), overall and posthoc subgroup analysis for patient BMI.
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The multiple linear regression model was able to predict signal-to-noise ratio (F (3;
5996) = 6616; p < 0.001) and showed a high goodness-of-fit (adjusted R2 = 0.77, Sy.x = 0.19).
All variables were identified as significant contributors towards SNR (each p < 0.001). The
variables “BMI” (B = −0.0286) and “Radiation Exposure” (B = −0.005) were associated
with SNR-deterioration. Only the variable “Denoising” had a positive impact on SNR, with
a mean SNR increase of B = 0.6191. See Table 3 for further regression metrics.

Table 3. Objective image quality analysis.

Variable B SE 95% CI
(Asymptotic) |t| p

Intercept 2.813 0.0152 2.783 to 2.843 185.60 <0.001
BMI −0.0286 0.0068 −0.0419 to −0.0153 4.21 <0.001

Radiation
Exposure −0.0053 0.0002 −0.0058 to −0.0049 23.87 <0.001

Denoising 0.6191 0.0048 0.6096 to 0.6286 127.90 <0.001

BMI = Body-Mass-Index in kg/m2; Radiation Exposure = dose area product in mGy*cm2; B = regression estimate;
SE = standard error; 95% CI = 95% confidence interval; |t| = absolute value of t statistics; p = significance level.

3.3. Diagnostic Confidence

Overall, diagnostic confidence was rated good (4 (3–5)) for the regular datasets and
excellent (5 (4–5)) for the denoised datasets. Spearman correlation showed good agreement
in both datasets (regular: r ≥ 0.859, p < 0.001; denoising: r ≥ 0.795, p < 0.001). See Table 4
for further details.

Table 4. Diagnostic confidence.

Pooled Rater 1 Rater 2 r
p

(Two-Sided,
Adjusted)

R
eg

ul
ar

Overall 4 (3–5) 4 (3–5) 4 (3–5) 0.913 <0.001
Normal Weight 5 (4–5) 5 (4–5) 5 (3–5) 0.951 <0.001

Pre-Obesity 4 (2–4) 4 (3–4) 4 (3–5) 0.859 <0.001
Obesity 3 (1–3) 3 (1–3) 3 (1–3) 0.926 <0.001

D
en

oi
si

ng Overall 5 (4–5) 5 (4–5) 5 (4–5) 0.834 <0.001
Normal Weight 5 (4–5) 5 (4–5) 5 (4–5) 0.912 <0.001

Pre-Obesity 5 (3–5) 5 (3–5) 5 (3–5) 0.925 <0.001
Obesity 4 (3–5) 4 (4–5) 4 (3–5) 0.795 <0.001

r = Spearman correlation coefficient, p = significance level.

In pairwise comparisons, the denoised datasets received overall significantly higher
diagnostic confidence grades (F(1; 1) = 4053; p = 0.010). In subgroup analysis, diagnostic
confidence deteriorated significantly for higher patient BMI (each p < 0.001) in the regular
datasets. Although there was also a measurable drop in diagnostic confidence in the
subgroup analysis of the denoised datasets, this was not statistically significant (p ≥ 0.103).
Figure 6 visualizes diagnostic confidence scores and pairwise comparisons.

Figure 7 shows example images of a 68-year-old adipose male patient (BMI = 30) un-
dergoing SIRT for hepatic uveal melanoma metastases, illustrating significantly enhanced
image quality by noise reduction and preserved localizability of the interventional target in
the intensity overlay map.
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4. Discussion

Liver-directed interventional radiology is crucial to modern comprehensive oncology.
It may help severely reduce organ tumor burden and thus potentially re-allow curative re-
section in otherwise non-treatable patients. Multiple studies have pointed out the additional
benefit of C-arm cone-beam CT to image-guided procedures via improved visualization.
Although modern interventional radiology suites usually include automatic radiation dose
adaption to guarantee stable signal yield, image quality deterioration in patients with high
BMI can still be challenging. This study examined the impact of a novel AI postprocessing
denoising algorithm on interventional cone-beam CT image quality, especially regarding
patient BMI.

As expected, we measured rising radiation exposure for rising patient BMI, undoubt-
edly due to our interventional suite’s automatic dose adaption feature. Although such
features aim to stabilize signal yield, we still measured significantly higher image noise
in the cone-beam CT of the pre-obesity and obesity subgroups compared to the normal
weight subgroup. This result is in line with that of previous publications. Buckley et al.
pointed out that the only viable option to improve signal yield in obese patients was to
increase the radiation dose [24]. Nonetheless, Fursevich et al. described the significantly
higher image noise in the CT of bariatric patients as particularly challenging [25]. In our
study, the denoising algorithm could produce stable image noise and signal-to-noise ratio
levels across all BMI subgroups. Other studies have described the potential benefit of
AI denoising algorithms on CT in obese patients. For example, Tamura et al. described
significantly reduced image noise when applying a denoising solution on abdominal CT
of obese patients, effectively enabling thin-slice imaging without sacrificing image qual-
ity [26]. However, their study focused on conventional CT of obese patients only, so they
did not perform BMI subgroup analyses to evaluate the stability of the denoising itself.
Zhong et al. proposed a denoising algorithm for cone-beam breast CT capable of reducing
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noise by 60% [27]. Conveying our results to percentage reduction, we achieved a mean
overall noise reduction of 26%, ranging from 11% in the normal-weight group to 41% in the
obesity group. Nevertheless, it is worth pointing out that breast imaging typically employs
lower kilovolt spectra than interventional liver cone-beam CT, resulting in a higher Poisson
noise prevalence per se [28]. Algorithms trained to remove Poisson noise may therefore
inherently produce higher results in such setups. In our study, diagnostic confidence was
significantly higher in the denoised datasets than in the regular datasets. Prior studies
have investigated diagnostic confidence when using AI denoising. Kolb et al. reported
lower overall confidence in denoised datasets but stable diagnosis-specific results in their
study regarding abdominal CT in patients with suspected appendicitis [29]. However,
their results did not encompass patient BMI, so no comparative conclusions could be
drawn. Still, it is necessary to reiterate that there also was a measurable drop in diagnostic
confidence ratings of the denoised datasets for rising BMI in our study. Although this
drop was not statistically significant, our readers pointed out that this might be due to
unfamiliar appearances in the denoising datasets, especially in the less intense appearing
PBV overlay maps. Nevertheless, we could not measure HU distortions in objective image
quality analysis. Therefore, we hypothesize that higher noise in the regular datasets might
render the vascular input function calculations more imprecise than in the post-processed
datasets. Additionally, our senior radiologist pointed out that the overlays are primarily
used as localizers for the interventional target instead of for blood flow quantification. Still,
several prior studies have pointed out unfamiliar appearances when using AI denoising.
Shin et al. described the loss of spatial information and left-shifted noise-power-spectra in
denoised images, especially for lower radiation doses [30]. McCollough et al. reiterated
this issue, especially pointing out significant blurring effects [31]. Although our study was
not focused on radiation dose reduction, imaging in obese patients may produce similar
signal yield insufficiencies [32]. Therefore, we advise cautious optimism when handling
novel AI solutions and properly evaluating patient BMI distribution performance stability.
Nonetheless, the investigated algorithm not only significantly enhanced image quality and
diagnostic confidence of interventional cone-beam CT compared to regular datasets in
our study, but it also enabled stable image quality and diagnostic confidence levels across
all BMI subgroups. Therefore, interventional radiology may benefit from AI denoising,
especially regarding higher patient BMI.

This study has several limitations. First, this was a retrospective study with 100 pa-
tients. Although an a priori power analysis confirmed the validity of our experiments
in this setup, a prospective follow-up study should explore the impact of AI denoising
on angiographic decision-making. Second, we used offline reconstruction. The actual
feasibility of implementing AI denoising into clinical workflows was not explored. Third,
this study focused on image quality metrics only. As our readers pointed out, denoising
produced unfamiliar appearances in some cases and reduced the intensity of the overlay
maps. Although this might have been due to misinterpretations in the regular datasets
due to higher image noise, quantitative follow-up studies are merited to investigate the
actual impact of denoising on time-intensity curves. Last, this study used cone-beam CT
examinations from a single interventional suite by one vendor. The generalizability of our
results beyond this setup may therefore be limited.

5. Conclusions

AI denoising can significantly enhance image quality in interventional cone-beam CT
and effectively mitigate diagnostic confidence deterioration for rising patient BMI.
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