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Abstract: (1) This study evaluates the impact of an AI denoising algorithm on image quality, diagnos-
tic accuracy, and radiological workflows in pediatric chest ultra-low-dose CT (ULDCT). (2) Methods:
100 consecutive pediatric thorax ULDCT were included and reconstructed using weighted filtered
back projection (wFBP), iterative reconstruction (ADMIRE 2), and AI denoising (PixelShine). Place-
consistent noise measurements were used to compare objective image quality. Eight blinded readers
independently rated the subjective image quality on a Likert scale (1 = worst to 5 = best). Each
reader wrote a semiquantitative report to evaluate disease severity using a severity score with six
common pathologies. The time to diagnosis was measured for each reader to compare the possible
workflow benefits. Properly corrected mixed-effects analysis with post-hoc subgroup tests were used.
Spearman’s correlation coefficient measured inter-reader agreement for the subjective image quality
analysis and the severity score sheets. (3) Results: The highest noise was measured for wFBP, followed
by ADMIRE 2, and PixelShine (76.9 ± 9.62 vs. 43.4 ± 4.45 vs. 34.8 ± 3.27 HU; each p < 0.001). The
highest subjective image quality was measured for PixelShine, followed by ADMIRE 2, and wFBP
(4 (4–5) vs. 3 (4–5) vs. 3 (2–4), each p < 0.001) with good inter-rater agreement (r ≥ 0.790; p ≤ 0.001).
In diagnostic accuracy analysis, there was a good inter-rater agreement between the severity scores
(r ≥ 0.764; p < 0.001) without significant differences between severity score items per reconstruction
mode (F (5.71; 566) = 0.792; p = 0.570). The shortest time to diagnosis was measured for the PixelShine
datasets, followed by ADMIRE 2, and wFBP (2.28 ± 1.56 vs. 2.45 ± 1.90 vs. 2.66 ± 2.31 min; F (1.000;
99.00) = 268.1; p < 0.001). (4) Conclusions: AI denoising significantly improves image quality in
pediatric thorax ULDCT without compromising the diagnostic confidence and reduces the time to
diagnosis substantially.

Keywords: pneumonia; computed tomography; AI (artificial intelligence); image quality enhancement

1. Introduction

Computed Tomography (CT) of the chest is an important diagnostic tool in pediatric
patients to rule out severe cases of pneumonia. The COVID-19 pandemic has underlined
the usefulness of chest CT in this context [1]. CT may also help identify potentially critical
emergencies in oncological cases, especially pneumonia after stem cell transplantations [2].
Furthermore, in some congenital diseases, regional structural lung damage may be visible
in CT before symptom onset, allowing for preventative rather than reactive therapy [3].
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Nonetheless, radiation exposure in pediatric patients causes concern for difficultly in
predictable long-term harms, as multiple studies have described increased cancer risks
in similar contexts [4–6]. Hence, many ultra-low-dose CT (ULDCT) protocols have been
established in the last decade, prominently featuring spectral shaping [7]. Spectral shaping
is a technique that typically employs extra tin filter layers in front of the x-ray tube,
effectively absorbing low-energy photons [8]. Especially in pulmonary CT, shaping the
spectrum in favor of higher energies is acceptable, as the contribution of low-energy
photons to overall signal yield is negligible [9]. However, although being more dose-
efficient, spectral shaping ULDCT protocols nonetheless have lower overall image quality
than their standard counterparts due to higher noise [10]. Recently, AI-based denoising
software solutions enabled image quality enhancement capabilities beyond the limits of
conventional reconstruction methods [11]. Yet, these novel solutions come with novel
challenges, particularly loss of spatial information and blurring [12]. Therefore, prominent
review articles advise evaluating such algorithms strictly on a clinical use-case basis [13]. To
the best of our knowledge, a thorough investigation of the potential effects of AI denoising
in pediatric thorax ULDCT has not been attempted so far. Therefore, our goal was to
evaluate the effects of AI denoising in this context. We hypothesized that image quality
and workflows in pediatric thorax ULDCT might benefit from AI denoising.

2. Materials and Methods
2.1. Study Design, Population, and Radiation Dose

An a priori power analysis using the software solution G*Power (ver. 3.1.9.7, Franz
Faul, University of Kiel, Kiel, Germany) determined the necessary sample size (f = 1.18,
α = 0.05, 1-β = 0.95) to be 100 patients [14]. The institutional review board approved
retrospective eligibility analysis and data collection of our centers’ in-patients for this
single-center study’s purpose from 1 January 2021 to 1 January 2022 with a waiver for
the need for informed consent (#167/2022BO2). Initially, we performed a database search
(keywords: pneumonia AND pediatric AND computed tomography). If a patient had
received multiple thorax ULDCT in the given timeframe, we only included the most recent
and removed the others (“duplicates”). Further exclusion criteria were clinical indications
other than (suspected) pneumonia, contrast-enhanced imaging, and image acquisition
protocols other than ULDCT. From the thus enrolled 100 patients, we collected age and
sex at the procedure time from their clinical reports. For radiation dose comparison, the
patient’s mean CT dose index (CTDIvol in mGy), the mean dose-length product (DLP in
mGy*cm), and the mean SSDE (size-specific dose estimate in mGy, [15,16]) were extracted
using the dose-management software DoseM ® (Infinitt Europe GmbH, Frankfurt am
Main, Germany).

2.2. Image Acquisition and Reconstruction Parameters

All CT examinations were non-contrast-enhanced and performed on the same third
generation CT scanner (SOMATOM Force; Siemens Healthineers, Erlangen, Germany).
Attenuation-based tube current modulation (CARE Dose4D, reference mAs 190) was acti-
vated for the examination. The tube voltage was set to Sn100 (single-source 100 kV with
tin filter). Collimation was set to 0.6 × 192/128 mm, pitch was 2.8 (“Flash mode”), and
gantry rotation time to 0.25 s. A medium-soft kernel (Br40d) was used to reconstruct all
images. The CT datasets were reconstructed in an axial orientation with a slice thickness
and an increment of 1 mm using weighted Filtered Back Projection (wFBP) and Advanced
Modeled Iterative Reconstruction strength 2 (ADMIRE®, Siemens Healthineers, Erlangen,
Germany), as is standard in our institute. Additionally, a novel AI-based postprocessing
software solution (PixelShine®, AlgoMedica, Sunnyvale, CA, USA) was used to denoise
the wFBP images, resulting in three datasets per patient.
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2.3. Objective Image Quality

All corresponding series per patient (wFBP, ADMIRE 2, PixelShine) were loaded into
the open-source ImageJ distribution FIJI (ver. 1.53 K, Wayne Rasband, National Institutes
of Health-NIH, Maryland, MD, USA) [17]. The wFBP series were used to draw a total of
30 regions of interest (ROIs) per patient bilaterally in homogeneous paraspinal muscles
(3 ROIs on each side in 5 consecutive slices, diameter ≥ 1 cm2). The program then conveyed
those ROIs into each loaded series and performed place-consistent measurements of mean
CT numbers in Hounsfield Units (HU) and their standard deviation (SD). The SD of HU
was defined as image noise.

2.4. Subjective Image Quality

The patient datasets were anonymized and randomized by a group member other-
wise not associated with this project. A total of 8 blinded readers with different experi-
ence levels in pediatric thorax ULDCT independently rated the subjective image quality
(Rater 1 = medical student at the end of a 3 month internship, Rater 2–6 = radiology resi-
dents with 1, 2, 3, 4, and 5 years of experience, Rater 7–8 = radiology consultants with 6
and 7 years of experience). Subjective image quality was rated on a 5-point Likert scale
(1 = poor, 2 = subpar, 3 = fair; 4 = good, 5 = excellent) according to the diagnostic require-
ments mentioned in the chapter “Chest, General” of the European Guidelines on Image
Quality in Computed Tomography [18].

2.5. Diagnostic Accuracy

Each reader filled out a custom semiquantitative severity score report table during the
subjective image quality analysis sessions. This score evaluates the subjective conspicuity
(0 = no affection, 1 = 0–50% affection, 2 = 51–100% affection) of six common pneumonia-
related pathologies (peribronchial cuffing, mucus plugging, ground glass opacities, cavities,
consolidations, air trapping) in six pulmonary regions (right upper lobe, right middle lobe,
right lower lobe, left upper lobe, lingula segment, and left lower lobe).

2.6. Time to Diagnosis

The time to diagnosis (until the severity score report table was finished) was measured
for each reader to explore the potential effects of reconstruction mode on radiological work-
flows. In addition, we performed post-hoc subgroup analyses for professional experience
levels to investigate potential dependencies.

2.7. Statistical Analysis

Statistical analysis and illustration were performed using GraphPad Prism version
9.3.1 for Windows (GraphPad Software, San Diego, CA, USA). Data distribution was tested
using the Shapiro–Wilk test. Normally distributed variables were expressed as mean ± SD,
and non-normally distributed variables as median and interquartile range (IQR). Data
analysis ensued using mixed-effects models with Greenhouse–Geisser correction in case
of violation of sphericity, and two-stage step-up correction after Benjamini, Krieger, and
Yekutieli to counteract the type-1-error increase in post-hoc multiple comparisons. An
adjusted p-value ≤ 0.05 indicated statistical significance. Spearman’s correlation coefficient
(r) was used to quantify the inter-rater agreement of the subjective image quality analysis
and the severity score points. Correlation coefficient values of 0–0.30 were interpreted
as negligible, 0.31–0.50 as low, 0.51–0.70 as moderate, 0.71–0.90 as good, and 0.91–1.00 as
excellent levels of agreement.

3. Results
3.1. Patient Population

We evaluated 317 pediatric thorax ULDCT for eligibility, excluded 217, and included
100 examinations (1 examination per patient). From the included 100 examinations, we
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generated 300 datasets through reconstruction and postprocessing for further investigations.
Figure 1 visualizes patient enrollment and the study workflow.
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Figure 1. Patient enrollment and study workflow.

Our study cohort comprised 45 females and 55 males. At the time of the examination,
the mean overall age was 10 ± 7 years (females: 10 ± 8 years; males 10 ± 6 years). Mean
overall radiation exposure (SSDE) was 0.23 ± 0.09 mGy (females: 0.25 ± 0.11 mGy; males
0.22 ± 0.06 mGy). Mean overall CTDIvol was 0.30 ± 0.16 mGy (females: 0.32 ± 0.20 mGy;
males 0.28 ± 0.11 mGy) and mean overall DLP was 8.69 ± 5.54 mGy*cm (females:
8.80 ± 6.63 mGy*cm; males 0.60 ± 4.66 mGy*cm). In 60 patients (28 female), pneumo-
nia screening CT was indicated due to oncological diseases, in 20 patients (8 female) due to
infectious diseases, in 15 patients (8 female) due to congenital diseases, and in 5 patients
(all male) in the course of surgical issues.
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3.2. Objective Image Quality

The highest noise was measured for wFBP (76.9 ± 9.62 HU), followed by ADMIRE 2
(43.4 ± 4.45 HU) and PixelShine (34.8 ± 3.27 HU). Mixed-effects analysis showed significant
differences between the groups (F (1.00; 99.0) = 4348; p < 0.001). Figure 2 graphs the
data distribution of the noise measurements and corrected p-values of post hoc pairwise
comparisons between each group.
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Figure 2. Noise measurements with pairwise comparisons.

3.3. Subjective Image Quality

In summary, subjective image quality was generally rated fair (median 3) for wFBP,
good (median 4) for ADMIRE 2, and excellent (median 5) for PixelShine. There was a
good inter-rater agreement for wFBP (r ≥ 0.764; p ≤ 0.001) and for PixelShine (r ≥ 0.790;
p ≤ 0.001), and an excellent inter-rater agreement for ADMIRE 2 (r ≥ 0.908; p ≤ 0.001). See
Table 1 for further details about subject image quality ratings and inter-rater-agreement.

Overall, the highest pooled subjective image quality ratings were measured for Pix-
elShine (4 (4–5)), followed by ADMIRE 2 (3 (4–5) and by wFBP (3 (2–4)), with statistically
significant steps between each. Figure 3 shows the pooled subjective image quality rating
distributions and corrected p-values of pairwise comparisons.
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Table 1. Subjective image quality ratings and inter-rater-agreement.

Rating Spearman Correlation Coefficient

Median (IQR)

Reader 1 Reader 2 Reader 3 Reader 4 Reader 5 Reader 6 Reader 7 Reader 8

wFBP

Reader 1 3 (2–3) 1.000 0.843 0.975 0.834 0.962 0.823 0.953 0.813
Reader 2 3 (2–4) 0.843 1.000 0.814 0.991 0.803 0.980 0.794 0.970
Reader 3 3 (2–4) 0.975 0.814 1.000 0.805 0.988 0.794 0.979 0.784
Reader 4 3 (2–4) 0.834 0.991 0.805 1.000 0.793 0.989 0.785 0.979
Reader 5 3 (2–4) 0.962 0.803 0.988 0.793 1.000 0.782 0.991 0.772
Reader 6 3 (2–4) 0.823 0.980 0.794 0.989 0.782 1.000 0.774 0.990
Reader 7 3 (2–4) 0.953 0.794 0.979 0.785 0.991 0.774 1.000 0.764
Reader 8 3 (2–4) 0.813 0.970 0.784 0.979 0.772 0.990 0.764 1.000

ADMIRE 2

Reader 1 4 (3–5) 1.000 0.970 0.944 0.933 0.922 0.917 0.912 0.908
Reader 2 4 (3–5) 0.970 1.000 0.971 0.957 0.945 0.939 0.933 0.928
Reader 3 4 (3–5) 0.944 0.971 1.000 0.985 0.971 0.964 0.957 0.951
Reader 4 4 (3–5) 0.933 0.957 0.985 1.000 0.985 0.978 0.971 0.964
Reader 5 4 (3–5) 0.922 0.945 0.971 0.985 1.000 0.992 0.985 0.978
Reader 6 4 (3–5) 0.917 0.939 0.964 0.978 0.992 1.000 0.992 0.985
Reader 7 4 (3–5) 0.912 0.933 0.957 0.971 0.985 0.992 1.000 0.992
Reader 8 4 (3–5) 0.908 0.928 0.951 0.964 0.978 0.985 0.992 1.000

PixelShine

Reader 1 5 (4–5) 1.000 0.921 0.882 0.845 0.826 0.808 0.808 0.790
Reader 2 5 (4–5) 0.921 1.000 0.958 0.918 0.898 0.878 0.878 0.858
Reader 3 5 (4–5) 0.882 0.958 1.000 0.958 0.937 0.916 0.916 0.895
Reader 4 5 (4–5) 0.845 0.918 0.958 1.000 0.978 0.956 0.956 0.935
Reader 5 5 (4–5) 0.826 0.898 0.937 0.978 1.000 0.978 0.978 0.956
Reader 6 5 (4–5) 0.808 0.878 0.916 0.956 0.978 1.000 1.000 0.977
Reader 7 5 (4–5) 0.808 0.878 0.916 0.956 0.978 1.000 1.000 0.977
Reader 8 5 (4–5) 0.790 0.858 0.895 0.935 0.956 0.977 0.977 1.000

wFBP = weighted filtered back-projection; ADMIRE 2 = Advanced Modeled Iterative Reconstruction strength 2;
IQR = interquartile range.
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3.4. Diagnostic Accuracy

In wFBP reconstructions, the patients had a mean severity score of 10.00 ± 6.4 points,
in ADMIRE 2 reconstructions 10.00 ± 6.40 points, and in PixelShine reconstructions 10.00
± 6.63 points with good inter-rater agreement (wFBP r ≥ 0.764; ADMIRE 2 r ≥ 0.777;
PixelShine r ≥ 0.826; each p < 0.001). See Table 2 for further details about severity score
points and inter-rater-agreement.

Table 2. Severity score ratings and inter-rater-agreement.

Severity Score Spearman Correlation Coefficient

(Mean ± SD)

Reader 1 Reader 2 Reader 3 Reader 4 Reader 5 Reader 6 Reader 7 Reader 8

wFBP

Reader 1 11.90 ± 6.72 1.000 0.990 0.979 0.970 0.764 0.772 0.813 0.784
Reader 2 11.70 ± 6.72 0.990 1.000 0.989 0.980 0.774 0.782 0.823 0.794
Reader 3 11.60 ± 6.83 0.979 0.989 1.000 0.991 0.785 0.793 0.834 0.805
Reader 4 11.50 ± 6.86 0.970 0.980 0.991 1.000 0.794 0.803 0.843 0.814
Reader 5 9.35 ± 5.92 0.764 0.774 0.785 0.794 1.000 0.991 0.953 0.979
Reader 6 9.15 ± 5.84 0.772 0.782 0.793 0.803 0.991 1.000 0.962 0.988
Reader 7 9.03 ± 5.88 0.813 0.823 0.834 0.843 0.953 0.962 1.000 0.975
Reader 8 9.03 ± 5.81 0.784 0.794 0.805 0.814 0.979 0.988 0.975 1.000

ADMIRE 2

Reader 1 11.60 ± 6.72 1.000 0.996 0.993 0.989 0.782 0.778 0.783 0.777
Reader 2 11.50 ± 6.76 0.996 1.000 0.998 0.994 0.784 0.779 0.785 0.780
Reader 3 11.40 ± 6.76 0.993 0.998 1.000 0.997 0.790 0.787 0.794 0.786
Reader 4 11.30 ± 6.71 0.989 0.994 0.997 1.000 0.797 0.795 0.802 0.794
Reader 5 9.17 ± 5.7 0.782 0.784 0.790 0.797 1.000 0.996 0.985 0.989
Reader 6 9.12 ± 5.78 0.778 0.779 0.787 0.795 0.996 1.000 0.986 0.991
Reader 7 9.00 ± 5.85 0.783 0.785 0.794 0.802 0.985 0.986 1.000 0.990
Reader 8 9.02 ± 5.81 0.777 0.780 0.786 0.794 0.989 0.991 0.990 1.000

PixelShine

Reader 1 11.20 ± 6.45 1.000 0.998 0.996 0.996 0.830 0.831 0.861 0.826
Reader 2 11.10 ± 6.49 0.998 1.000 0.997 0.996 0.831 0.832 0.864 0.827
Reader 3 11.00 ± 6.43 0.996 0.997 1.000 1.000 0.845 0.845 0.878 0.840
Reader 4 11.00 ± 6.45 0.996 0.996 1.000 1.000 0.846 0.846 0.879 0.841
Reader 5 9.26 ± 5.93 0.830 0.831 0.845 0.846 1.000 0.999 0.989 0.998
Reader 6 9.23 ± 5.92 0.831 0.832 0.845 0.846 0.999 1.000 0.990 0.999
Reader 7 9.41 ± 5.93 0.861 0.864 0.878 0.879 0.989 0.990 1.000 0.988
Reader 8 9.18 ± 5.90 0.826 0.827 0.840 0.841 0.998 0.999 0.988 1.000

wFBP = weighted filtered back-projection; ADMIRE 2 = Advanced Modeled Iterative Reconstruction strength 2;
SD = standard deviation.

While there were significant interactions between the score items themselves (F (3.68;
364) = 45.7; p < 0.001), mixed-effects analysis did not reveal significant interactions for
severity score items per reconstruction mode (F (5.71; 566) = 0.792; p = 0.570). Figure 4
shows post-hoc pairwise comparisons for the mean severity score sums per score item and
series (wFBP, ADMIRE 2, PixelShine), as well as score-item-specific exemplary images.
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3.5. Time to Diagnosis

Overall, time to diagnosis was highest in wFBP datasets (2.66 ± 2.31 min), followed
by ADMIRE 2 (2.45 ± 1.90 min) and PixelShine (2.28 ± 1.56 min). Mixed-effects analysis
showed significant interactions between these groups (F (1.000; 99.00) = 268.1; p < 0.001).
Unsurprisingly, the post-hoc subgroup analyses revealed consultants to produce the fastest
results (1.10 ± 0.01 min), followed by residents (3.05 ± 0.32 min) and medical students
(6.46 ± 1.04 min). When examining the effect of reconstruction mode within these groups,
it became clear that reports by medical students and residents were done significantly faster
on the denoised datasets than on ADMIRE 2 and wFBP (each p < 0.001). For consultants,
reconstruction mode did not affect the time to diagnosis (p ≥ 0.249). Figure 5 graphs the
time to diagnosis per reconstruction mode in minutes as a function of experience levels
in years.
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4. Discussion

Although CT to rule out pneumonia is generally used with great reluctance in pedi-
atric patients because of the difficultly predictable long-term effects, it is still a standard
tool for time-efficient and comprehensive diagnoses. A promising technique to minimize
potentially harmful radiation exposure in pediatric thorax ultra-low-dose CT protocols
is to improve the dose-effectiveness by shaping the X-ray spectrum in favor of higher
energy photons. However, the typical trade-off of such approaches is lower image quality
than standard protocols due to higher image noise. This study examined the impact of a
novel AI denoising algorithm on image quality, diagnostic accuracy, and radiological work-
flows. Multiple previous studies demonstrated impaired image quality in spectral shaping
ULDCT protocols compared to full-spectrum protocols. For example, while Bodelle et al.
described constant subjective image quality, image noise was higher in their spectral shap-
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ing study group [9]. Suntharalingam et al. reiterated these findings, describing objective
image quality deterioration due to higher noise in their spectral shaping study group [19].
However, these studies focused on evaluating spectral shaping protocols in the first place,
without additional postprocessing. Wetzl et al. reported significant image quality improve-
ments in spectral shaping protocols using advanced iterative reconstruction [20]. In our
study, AI denoising was capable of improving image quality beyond that of standard wFBP
and iterative reconstruction datasets. Evaluating AI postprocessing has been the scope
of several previous studies as well. For example, Kolb et al. pointed out significantly
improved objective image quality in their denoised simulated low dose datasets. However,
they also reported the subjective image quality of the original 100% dose images to still
be significantly higher than that of the denoised images [21]. On the other hand, further
studies described significantly improved subjective image quality of denoised datasets
compared to regular reconstruction methods, with possible radiation dose reductions of up
to 70% [11]. However, these studies focused on low-dose imaging via tube current-time
product (mAs) reductions in full-spectrum protocols. AI image quality enhancement in
spectral shaping protocols has not been attempted so far to the best of our knowledge,
so the comparability of our results may be limited. Furthermore, minding the spectral
distribution and the low acquisition parameters of the ULDCT protocol used in this study,
the feasibility of similar dose reduction approaches remains the subject of further research.
When using AI denoising, possible diagnostic confidence distortions through algorithmic
misinterpretations are a commonly voiced concern [22]. However, Yang et al. reported
improved lesion delineation when using CT AI denoising [23]. In our study, we measured
retained diagnostic confidence on a radiological score-item level, proving the technique’s
feasibility in this context. Several studies have evaluated the integrability of AI into radio-
logical workflows and its potential benefits [24–26]. However, these applications generally
increase the reporting time via supportive workflow improvements and computer-aided
diagnoses. In our study, time to diagnosis increased significantly for medical students and
residents when using the denoised datasets. However, the reporting time of consultant
radiologists was not affected by reconstruction mode. As similar results have not been
described so far, we can only hypothesize that denoising may help “declutter” medical
images, which may be especially helpful for less-experienced radiologists. This study
has several limitations. First, we used a retrospective study design. Although an a priori
power analysis confirmed the validity of our results in this setup, any conclusions about the
prospective clinical decision-making are nonetheless limited. Second, this study examined
image quality metrics and diagnostic criteria related to suspected pneumonia in pediatric
patients. As previous review articles have pointed out, AI denoising algorithms should be
carefully evaluated on a use-case level. In our case, this especially pertains to potential inci-
dental findings in thorax ULDCT, such as vascular malformations or potentially malignant
lesions. As such analyses require thorough preparatory work to match normal prevalence
distributions of potential incidental findings in pediatric ULDCT cohorts, additional studies
are needed to validate the algorithm’s performance outside of the investigated medical
issue. Lastly, this study was performed using a high-end third generation CT scanner,
which might not be readily available at every site. Our results might therefore be specific to
this setup.

5. Conclusions

AI denoising significantly improves image quality in pediatric thorax ULDCT without
compromising the diagnostic confidence and reduces the time to diagnosis substantially.
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